
Read the Docs Template
Documentation

Release 1.0

Read the Docs

May 13, 2022

Collection API

1 Collection API (Version 1.0) 3
1.1 Authors: Sabrine Chelbi, Thomas Jejkal . 3

1.1.1 1. What is Collection API? . 3
1.1.2 2. Installation . 4
1.1.3 3. Collection API Implementation . 4
1.1.4 4. How can the Collection API be used? . 5

i

ii

Read the Docs Template Documentation, Release 1.0

This documentation describes the single components of the KIT Data Manager Research Data Repository Platform.
KIT Data Manager (KIT DM) is a domain-agnostic platform for building up research data repositories for manag-
ing research data according to the FAIR principles. Therefor, globally agreed recommendations and standards, e.g.
outcomes of the Research Data Alliance, are implemented and integrated into the platform. Due to the different re-
quirements for a domain-agnostic platform, all components are designed as independent as possible from each other.
This allows to use only components required by a particular use case. This reduced complexity and offers a high level
of flexibility for current and future challenges in the field of research data management.

Collection API 1

Read the Docs Template Documentation, Release 1.0

2 Collection API

CHAPTER 1

Collection API (Version 1.0)

1.1 Authors: Sabrine Chelbi, Thomas Jejkal

The Collection API is proposed by the RDA Recommendation on Research Data Collections doi:
10.15497/RDA00022. It can be used for building collections of digital objects independent from any repository in
order to facilitate data interoperability, reuse and make collections actionable to be able to cope with ever increasing
amounts and volumes of data.

1.1.1 1. What is Collection API?

A collection is a digital object which bears a unique identifier and binds a finite number of digital objects together,
which have common concerns. The collection API is an interface specification for CRUD (Create, Read, Update and
Delete) operations on collections in order to enable client-server interaction with particular observance of persistent
identification. It can be used for building collections of digital objects independent from any repository in order to fa-
cilitate data interoperability, reuse and make collections actionable to be able to cope with ever increasing amounts and
volumes of data. The Collection API has been proposed by the RDA Recommendation on Research Data Collections.
The documentation of the different REST APIs is available under http://rdacollectionswg.github.io/apidocs/#/. More-
over, a JAVA implementation of the RDA Recommendation is provided by Steinbuch Centre for Computing (SCC) as
a Spring Boot-based Microservice with a complete regard to the recommendation. As some aspects of Collection API
are not clearly defined, the implementation contains some fixes [FIX], additions [ADD] and restrictions [RES]:

• [FIX] Return type inconsistencies have been fixed, e.g. in /collections/{id}/members/{mid}.

• [FIX] Delete operations return status 204 (NO_CONTENT) according to the HTTP specification.

• [FIX] Delete operations are realized idempotent following the HTTP specification. This means, that DELETE
can be issued multiple times to a resource and returns HTTP 204 in all cases.

• [FIX] Collection operations allow navigation the same way all other operations do, e.g. via prev and next links.

• [RES] Listing a collection recursively does not consider the sorting of child elements.

• [RES] A recursive listing of a collection will also contain member items of expanded collections.

3

http://doi.org/10.15497/RDA00022
https://zenodo.org/record/2428145#.X0YVOpMzafU
http://rdacollectionswg.github.io/apidocs/#/

Read the Docs Template Documentation, Release 1.0

• [RES] There is currently no build-in PID support. If no PID are provided with a collection or member, a UUID
is assigned.

• [ADD] Integrated ETag support in order to avoid concurrent modifications.

• [ADD] Navigation through a result set is realized using default Spring pagination, e.g. supporting page and size
query parameters. The cursors (next and prev) of a result set are pointing to the next/prev page link.

1.1.2 2. Installation

For running the collection-api service you may either startup a docker container or you build and run the service from
source. The source code is available at https://github.com/kit-data-manager/collection-api For more information about
compiling and starting from source, please refer to the README located in the source repository. In the following,
running the collection-api service using docker is explained.

Prerequisites:

• docker (tested with 19.03.8).

You can create an instance of the collection-api service by running docker:

$ docker run -d -p 8080:8080 kitdm/collection-api:latest

Unable to find image 'kitdm/collection-api:latest' locally
latest: Pulling from kitdm/collection-api
3192219afd04: Pull complete
17c160265e75: Pull complete
cc4fe40d0e61: Pull complete
9d647f502a07: Pull complete
[...]
Status: Downloaded newer image for kitdm/collection-api:latest

As soon as the microservice is started, you can browse to http://localhost:8080/swagger-ui.html in order to use the
available REST APIs.

1.1.3 3. Collection API Implementation

3.1 Collection API Architecture

The architecture of the Collection API service is illustrated in the figure below. The bottom component is the Collection
API core, which includes the collection implementation. The service contains various REST APIs responsible for
interacting with users and thus enabling collections and collection items management. Moreover, the service offers
a graphical web frontend in order to visualize managed collections, collection items and relationships between them.
The web frontend is available under http://{hostname}:{port}/static/overview.html. In addition, an intuitive graphical
user interface will be developed in the future by SCC.

3.2 Data Model

3.2.1 Service Features

The table below includes the different service-level features this implementation offers.

4 Chapter 1. Collection API (Version 1.0)

https://github.com/kit-data-manager/collection-api
http://localhost:8080/swagger-ui.html
http:/

Read the Docs Template Documentation, Release 1.0

Fig. 1: Figure 1: Collection API architecture

serviceFeatures

providesCollectionPids: false
collectionPidProviderType: null
enforcesAccess: false
supportsPagination: true
asynchronousActions: false
ruleBasedGeneration: false
maxExpansionDepth: -1
providesVersioning: false
supportedCollectionOperations: null
supportedModelTypes: null

3.2.2 Collection Object

The service offers the possibility to create and manage collections and collection items. The figure below includes a
data model of a collection, collection item and the relationship between them.

• Collection: includes the following attributes:

1. Collection capabilities: comprise the following attributes, which determine the possible actions on a collection.

2. Collection properties: include collection’s metadata.

• Collection Item: In order to create a new collection item, the following attributes are expected to be given by
the user:

1. Mappings: include the following attributes:

1.1.4 4. How can the Collection API be used?

1.1. Authors: Sabrine Chelbi, Thomas Jejkal 5

Read the Docs Template Documentation, Release 1.0

Fig. 2: Figure 2: Collections and collection items

6 Chapter 1. Collection API (Version 1.0)

Read the Docs Template Documentation, Release 1.0

1.1. Authors: Sabrine Chelbi, Thomas Jejkal 7

Read the Docs Template Documentation, Release 1.0

8 Chapter 1. Collection API (Version 1.0)

Read the Docs Template Documentation, Release 1.0

1.1. Authors: Sabrine Chelbi, Thomas Jejkal 9

Read the Docs Template Documentation, Release 1.0

4.1 Example

In this section, an example of Collection API is introduced. Let’s assume we want to publish a data set of an experi-
ment. The set includes raw data, implementation and results. These collections are sub-collections of the “experiment”
collection. The “rawData” collection includes one item called “images”, which represents a set of images used in the
experiment and which is stored in a research data repository. As it exists two implementations of the experiment based
on two different methods, the “implementation” collection includes two items “method1” and “method2”, which are
stored in two Git repositories. The “result” collection includes two sub-collections “result1” and “result2”, which
includes the results of the experiment based on both methods in form of documents such as images, Excel sheets, etc.
Moreover, the user wants to store the item of the method-implementation in the results sub-collections to be able to
check on which implementation the results are generated. As the Collection API offers the possibility to share items
between different collections, each result sub-collection includes also the implementation item of the used method.
The figure below describes how the collections and their items should look like.

Fig. 3: Figure 4: Example

In the next sections, we will describe how to build up the above example using the Collection API service.

4.2 Creation of collections

Using the POST operation http://localhost:8080/api/v1/collections, we have the possibility to create collections one
by one or all together. As an input, a JSON object including the collection attributes is needed. In the above described
example, six collections should be created. Figure 5 below includes an example of creating the “experiment” collection
and the response of this operation is represented in Figure 6. The non-given attributes are filled out with the default
values. Moreover, the created date is automatically generated. As the experiment collection is not an item of another
collection and has no items yet, the value of both attributes “memberOf” and “members” is an empty list. The five
remaining collections “rawData”, “implementation”, “results”, “result1” and “result2” can be created in the same way.

4.3 Creation of sub-collections

In order to add the relationship between “experiment” collection and other collections, we should add
the sub-collections as items to the parent collection using the following POST operation: http:// local-
host:8080/api/v1/collections/{collection_identifier}/members. To run this operation, “id”, “location” and “datatype”

10 Chapter 1. Collection API (Version 1.0)

http://localhost:8080/api/v1/collections
http://

Read the Docs Template Documentation, Release 1.0

Fig. 4: Figure 5: Creation of the experiment collection

1.1. Authors: Sabrine Chelbi, Thomas Jejkal 11

Read the Docs Template Documentation, Release 1.0

Fig. 5: Figure 6: Response of the POST experiment collection

12 Chapter 1. Collection API (Version 1.0)

Read the Docs Template Documentation, Release 1.0

are mandatory fields. Figure 7 includes an example of the JSON object needed while adding “rawData” collection to
the “experiment” collection.

Fig. 6: Figure 7: Add „rawData“ as a sub-collection

After executing this operation, “rawData” collection is added to the member list of the “experiment” collection as
shown in Figure 8, which includes a response of the GET collection operation.

The remaining collections can be added the same way as sub-collections to the “experiment” and “results” collection.

4.4 Creation of collection items

In order to create a new member and add it to a collection, the same POST operation mentioned in 4.3 should be
performed: http://localhost:8080/api/v1/collections/{collection_identifier}/members. Figure 9 includes an example of
adding item “images” to collection “rawData”.

Moreover, item “method1” is a shared item of two collections and Figure 10 includes an example of a JSON object,
which should be added to both collections using the POST operation. Only the identifier of the collection, to which
the item is added, should be modified.

Other REST APIS are available such as listing collections and items, updating or removing them. Moreover, to
access the visualization of the above created collections, items and relationships between them, you can browse to
http://localhost:8080/static/overview.html. Figure 11 includes the example overview. Blue ovals represent collections
and orange ones represent member items.

To have more information about the collections or items, the user has just to click on the oval. Figure 12 includes an
example of a collection description. Moreover, you can search a collection or an item by writing its identifier in the
search box.

In order to build the above described example, a short tutorial is available under https://www.katacoda.com/kitdm/
scenarios/collection-api

1. What is Collection API? A short overview of the Collection API.

2. Installation Installation instructions.

3. Collection API Implementation illustration of the service architecture.

4. How can the Collection API be used? Steps towards realizing an example use case.

1.1. Authors: Sabrine Chelbi, Thomas Jejkal 13

http://localhost:8080/api/v1/collections
http://localhost:8080/static/overview.html
https://www.katacoda.com/kitdm/scenarios/collection-api
https://www.katacoda.com/kitdm/scenarios/collection-api

Read the Docs Template Documentation, Release 1.0

Fig. 7: Figure 8: Get „experiment“ collection

14 Chapter 1. Collection API (Version 1.0)

Read the Docs Template Documentation, Release 1.0

Fig. 8: Figure 9: Creation of „images“ item

Fig. 9: Figure 10: Add “method1” item to the “implementation” collection

1.1. Authors: Sabrine Chelbi, Thomas Jejkal 15

Read the Docs Template Documentation, Release 1.0

Fig. 10: Figure 11: Overview

Fig. 11: Figure 12: Collection description

16 Chapter 1. Collection API (Version 1.0)

	Collection API (Version 1.0)
	Authors: Sabrine Chelbi, Thomas Jejkal
	1. What is Collection API?
	2. Installation
	3. Collection API Implementation
	4. How can the Collection API be used?

