

The KIT Data Manager Repository Platform Documentation

This documentation describes the single components of the KIT Data Manager
Research Data Repository Platform. KIT Data Manager (KIT DM) is a domain-agnostic
platform for building up research data repositories for managing research
data according to the FAIR principles. Therefor, globally agreed recommendations
and standards, e.g. outcomes of the Research Data Alliance, are implemented and
integrated into the platform. Due to the different requirements for a domain-agnostic
platform, all components are designed as independent as possible from each other. This
allows to use only components required by a particular use case. This reduced complexity
and offers a high level of flexibility for current and future challenges in the field of
research data management.

Collection API (Version 1.0)

Authors: Sabrine Chelbi, Thomas Jejkal

The Collection API is proposed by the RDA Recommendation on Research Data
Collections doi: 10.15497/RDA00022 [http://doi.org/10.15497/RDA00022]. It can be used for building collections of digital
objects independent from any repository in order to facilitate data interoperability,
reuse and make collections actionable to be able to cope with ever increasing
amounts and volumes of data.

	1. What is Collection API?

	A short overview of the Collection API.

	2. Installation

	Installation instructions.

	3. Collection API Implementation

	illustration of the service architecture.

	4. How can the Collection API be used?

	Steps towards realizing an example use case.

1. What is Collection API?

A collection is a digital object which bears a unique identifier and binds a finite number of digital objects together, which have common concerns. The collection API is an interface specification for CRUD (Create, Read, Update and Delete) operations on collections in order to enable client-server interaction with particular observance of persistent identification. It can be used for building collections of digital objects independent from any repository in order to facilitate data interoperability, reuse and make collections actionable to be able to cope with ever increasing amounts and volumes of data. The Collection API has been proposed by the RDA Recommendation on Research Data Collections [https://zenodo.org/record/2428145#.X0YVOpMzafU]. The documentation of the different REST APIs is available under http://rdacollectionswg.github.io/apidocs/#/. Moreover, a JAVA implementation of the RDA Recommendation is provided by Steinbuch Centre for Computing (SCC) as a Spring Boot-based Microservice with a complete regard to the recommendation. As some aspects of Collection API are not clearly defined, the implementation contains some fixes [FIX], additions [ADD] and restrictions [RES]:

	[FIX] Return type inconsistencies have been fixed, e.g. in /collections/{id}/members/{mid}.

	[FIX] Delete operations return status 204 (NO_CONTENT) according to the HTTP specification.

	[FIX] Delete operations are realized idempotent following the HTTP specification. This means, that DELETE can be issued multiple times to a resource and returns HTTP 204 in all cases.

	[FIX] Collection operations allow navigation the same way all other operations do, e.g. via prev and next links.

	[RES] Listing a collection recursively does not consider the sorting of child elements.

	[RES] A recursive listing of a collection will also contain member items of expanded collections.

	[RES] There is currently no build-in PID support. If no PID are provided with a collection or member, a UUID is assigned.

	[ADD] Integrated ETag support in order to avoid concurrent modifications.

	[ADD] Navigation through a result set is realized using default Spring pagination, e.g. supporting page and size query parameters. The cursors (next and prev) of a result set are pointing to the next/prev page link.

2. Installation

For running the collection-api service you may either startup a docker container or you build and run the service from source.
The source code is available at https://github.com/kit-data-manager/collection-api
For more information about compiling and starting from source, please refer to the README located in the source repository.
In the following, running the collection-api service using docker is explained.

Prerequisites:

	docker (tested with 19.03.8).

You can create an instance of the collection-api service by running docker:

$ docker run -d -p 8080:8080 kitdm/collection-api:latest

Unable to find image 'kitdm/collection-api:latest' locally
latest: Pulling from kitdm/collection-api
3192219afd04: Pull complete
17c160265e75: Pull complete
cc4fe40d0e61: Pull complete
9d647f502a07: Pull complete
[...]
Status: Downloaded newer image for kitdm/collection-api:latest

As soon as the microservice is started, you can browse to http://localhost:8080/swagger-ui.html in order to use the available REST APIs.

3. Collection API Implementation

3.1 Collection API Architecture

The architecture of the Collection API service is illustrated in the figure below. The bottom component is the Collection API core, which includes the collection
implementation. The service contains various REST APIs responsible for interacting with users and thus enabling collections and collection items management.
Moreover, the service offers a graphical web frontend in order to visualize managed collections, collection items and relationships between them. The web frontend
is available under http://{hostname}:{port}/static/overview.html. In addition, an intuitive graphical user interface will be developed in the future by SCC.

[image: ../_images/architecture.png]

Figure 1: Collection API architecture

3.2 Data Model

3.2.1 Service Features

The table below includes the different service-level features this implementation offers.

	serviceFeatures

	
providesCollectionPids: false

collectionPidProviderType: null

enforcesAccess: false

supportsPagination: true

asynchronousActions: false

ruleBasedGeneration: false

maxExpansionDepth: -1

providesVersioning: false

supportedCollectionOperations: null

supportedModelTypes: null

3.2.2 Collection Object

The service offers the possibility to create and manage collections and collection items. The figure below includes a data model of a collection, collection item and the relationship between them.

[image: ../_images/collectionDataModel.png]

Figure 2: Collections and collection items

	Collection: includes the following attributes:

[image: ../_images/collectionTable.png]

	Collection capabilities: comprise the following attributes, which determine the possible actions on a collection.

[image: ../_images/collecionCapabilitiesTable.png]

	Collection properties: include collection’s metadata.

[image: ../_images/collectionPropertiesTable.png]

	Collection Item: In order to create a new collection item, the following attributes are expected to be given by the user:

[image: ../_images/collectitonItemTable.png]

	Mappings: include the following attributes:

[image: ../_images/MappingTable.png]

4. How can the Collection API be used?

4.1 Example

In this section, an example of Collection API is introduced. Let’s assume we want to publish a data set of an experiment. The set includes raw data, implementation and results. These collections are sub-collections of the “experiment” collection. The “rawData” collection includes one item called “images”, which represents a set of images used in the experiment and which is stored in a research data repository. As it exists two implementations of the experiment based on two different methods, the “implementation” collection includes two items “method1” and “method2”, which are stored in two Git repositories. The “result” collection includes two sub-collections “result1” and “result2”, which includes the results of the experiment based on both methods in form of documents such as images, Excel sheets, etc. Moreover, the user wants to store the item of the method-implementation in the results sub-collections to be able to check on which implementation the results are generated. As the Collection API offers the possibility to share items between different collections, each result sub-collection includes also the implementation item of the used method. The figure below describes how the collections and their items should look like.

[image: ../_images/example.png]

Figure 4: Example

In the next sections, we will describe how to build up the above example using the Collection API service.

4.2 Creation of collections

Using the POST operation http://localhost:8080/api/v1/collections, we have the possibility to create collections one by one or all together. As an input, a JSON object including the collection attributes is needed. In the above described example, six collections should be created. Figure 5 below includes an example of creating the “experiment” collection and the response of this operation is represented in Figure 6. The non-given attributes are filled out with the default values. Moreover, the created date is automatically generated. As the experiment collection is not an item of another collection and has no items yet, the value of both attributes “memberOf” and “members” is an empty list. The five remaining collections “rawData”, “implementation”, “results”, “result1” and “result2” can be created in the same way.

[image: Creation of the experiment collection]

Figure 5: Creation of the experiment collection

[image: Response of the POST experiment collection]

Figure 6: Response of the POST experiment collection

4.3 Creation of sub-collections

In order to add the relationship between “experiment” collection and other collections, we should add the sub-collections as items to the parent collection using the following POST operation: http:// localhost:8080/api/v1/collections/{collection_identifier}/members. To run this operation, “id”, “location” and “datatype” are mandatory fields. Figure 7 includes an example of the JSON object needed while adding “rawData” collection to the “experiment” collection.

[image: Add „rawData“ as a sub-collection]

Figure 7: Add „rawData“ as a sub-collection

After executing this operation, “rawData” collection is added to the member list of the “experiment” collection as shown in Figure 8, which includes a response of the GET collection operation.

[image: Get „experiment“ collection]

Figure 8: Get „experiment“ collection

The remaining collections can be added the same way as sub-collections to the “experiment” and “results” collection.

4.4 Creation of collection items

In order to create a new member and add it to a collection, the same POST operation mentioned in 4.3 should be performed: http://localhost:8080/api/v1/collections/{collection_identifier}/members. Figure 9 includes an example of adding item “images” to collection “rawData”.

[image: Creation of „images“ item]

Figure 9: Creation of „images“ item

Moreover, item “method1” is a shared item of two collections and Figure 10 includes an example of a JSON object, which should be added to both collections using the POST operation. Only the identifier of the collection, to which the item is added, should be modified.

[image: Add “method1” item to the “implementation” collection]

Figure 10: Add “method1” item to the “implementation” collection

Other REST APIS are available such as listing collections and items, updating or removing them. Moreover, to access the visualization of the above created collections, items and relationships between them, you can browse to http://localhost:8080/static/overview.html. Figure 11 includes the example overview. Blue ovals represent collections and orange ones represent member items.

[image: Overview]

Figure 11: Overview

To have more information about the collections or items, the user has just to click on the oval. Figure 12 includes an example of a collection description. Moreover, you can search a collection or an item by writing its identifier in the search box.

[image: Collection description]

Figure 12: Collection description

In order to build the above described example, a short tutorial is available under https://www.katacoda.com/kitdm/scenarios/collection-api

Index

Authors

	Thomas Jejkal

	Sabrine Chelbi

Installation

Install the package with pip:

$ pip install read-the-docs-template

The KIT Data Manager Repository Platform

KIT Data Manager is a Research Data Repository Platform consequently following state-of-the-art recommendations and standards for managing research data in a FAIR way.

Features

	Be awesome

	Make things faster

Contribute

	Issue Tracker: github.com/$project/$project/issues

	Source Code: github.com/$project/$project

Support

If you are having issues, please let us know.
We have a mailing list located at: webmaster@datamanager.kit.edu

License

The project is licensed under the Apache 2.0 license

Usage

To use this template, simply update it:

import read-the-docs-template

 _static/down.png

_images/collecionCapabilitiesTable.png
Property Name Description Mandatory | Default
/Optional | value

id identifier of the collection) -
capabilities

isOrdered identifies if the collection items optional false
are ordered

appendsToEnd For an ordered collection, it optional | false
indicates whether new items are
appended to the end

supportsRoles identifies whether a collection | optional | false
supports assigning roles to its
member items

membershiplsMutable | dentifies whether a collection | optional | true
membership is mutable

propertiesAreMutable | identifies whether a collection optional true
properties are mutable

restrictedToType indicates the type of the collection | optional | null
items

maxLength indicates the maximum length of | optional | -1

the collection

)

his value is automatically generated.

_static/plus.png

_images/collectionDataModel.png
CollectionObject 1

: String
description: String

.| Membership |

1

1

1

id: Long

1

1

CollectionProperties

CollectionCapabi

Mapping

Memberltem

id: Long
dateCreated: Instant
ownership: String

license: String

modelType: String
hasAccessRestrictions: boolean|
memberOf: Set<String>

descriptionOntology: String

id: Long
isOrdered: boolean
appendsToEnd: boolean
supportsRoles: boolean
membershiplsMutable: boolean
propertiesAreMutable: boolean
restrictedToType: String
maxLength: Integer

memberRole: String
index: Integer
dateAdded: Instant

dateUpdated: Instant

mid: String
location: String
description: String
datatype : String
ontology : String

_images/addRawDataSubcol.png
posT ~ htp:/ocalhostB080/api colections/1134453-67tr/members

Params Authorization Headers () Body® PrerequestScript Tests Settings

®rnone ®formdata @ xwwwformuriencoded @ raw @ binary @ GraphQL SO

“4311-35-tr76",

“location': "nttp://localhost:8080/api/VL/collections/4311-f35-4r76",
“datatype’: "21.T11148/603coccazse61d9e3831 "

_static/file.png

_images/architecture.png
GUI

Collection API Service

Client

REST APIs

Collection API core

Postgre
saL

_static/minus.png

_images/collectionTable.png
Property Name Description Mandatory/Optional | Default Value
id identifier for the Optional win
collection
description descriptive metadata | Optional null
about the collection
Collection capabilties | define the set of Optional -
actions supported by a
collection
Collection properties | functional metadata of | Optional -

a collection

_images/collectitonItemTable.png
Property Name Description Mandatory | Default
/Optional | Value
id identifier for the member optional uuID
location location at which the item data | mandatory |-
can be retrieved
description human readable description optional | null
datatype URI of the data type of this item. If | mandatory |-
the value of the
“restrictedToType” of the
collection is not null, then the
datatype of the member should
have the same value as the
“restrictedToType”
ontology URI of an ontology model class [optional | null
that applies to this item
mappings Collection item metadata optional | true

_images/collectionDescription.png
Search

Collection info

Identier

a567-a12.G289

Description

implomentation collction

properties

capabilities

_static/up-pressed.png

_images/collectionPropertiesTable.png
Property Name Description Mandatory | Default
/Optional | value

id identifier of the collection) -
properties

dateCreated the date the collection was ™ -
created

ownership identifies the owner of the optional | null
collection

license dentifies the license that applies | optional | null
to the collection

modelType identifies the model that the optional | null
collection adheres to

hasAccessRestrictions | indicates whether the collection optional true
has access restrictions

memberof includes a lst of collection *) -
identifiers to which this collection
belongs

descriptionOntology | identifies the ontology used for | optional null

descriptive metadata

(*): This value is automatically generated.

_static/up.png

_images/createImagesIt.png
posT ~ hatpu/iocalhost8080/apincollectons/4311-£35 tr76/members

Params Authoriation Headers (5 Body® Prerequestcrpt Tests Seuings

®none ® formdata @ xwwform-uriencoded @ raw @ binary ® GraphQL JSON ¥

Fd

2o ¢

3t nestgrse”,

4 location': "hetps://s3.amazonans con/1104FgT340up" ,
5 “description’: “item including inages used in the experiment”,
6 ‘datatype': "21.TI1148/6a3cacch25e6109e383F",

o .

8 “default”,

5 o

10

1

2]

_images/example.png
experiment

implementatio:

[images] [me«hnal] [methodz]

=

==

_images/MappingTable.png
Property Name Description Mandatory/ | Default
Optional | Value

role The role of this item inside the optional | null
collection

index The position of the item in the optional |0
collection

dateAdded The date the item was added to the | (*) .
collection

dateUpdated The date the item's metadata were | (*) =

last updated

(*): This value is automatically generated.

_images/addMethod1ToImplementation.png
PosT ~ hitp/ocalhoscB0BD/apUv/colections/4567-12-£289/members

Params Authorizaton Headers () Body® PrerequestScrpt Tests Settings

®rone ®formdata @ xwwwformurkencoded @raw @ binary @ GraghQL JSON

“1d": *1104-as89gh23"

1
2

3

4 “location': "https://s3.anazonaws. con/1104-as89gh23"

5 “description’: “item including the software code of the method",
6 “datatype': "21.T89648/fluvoabBZSe61d9es65g",

7~ noppings:

] “role": "default”,

5 “tndex”: 1]

ST

T

_images/experimentCollectionCre.png
Post POST Colecton o 4

» POST Collection
posT ~ hp/ocalhostB080/api collections!

Params Authorization Headers (4 Body® Prerequestscrpt

®rone ® fomdaa @ xwwwform-uencoded @ raw @ binary.

2o

3t Caaefsieree,

4 “copabilities

5 "{sordered": true,

6 “appendsToEnd: true,

7

5

£l

10

u

12~ “properties”:

b} ‘omnenship®: "SCC",

1 License™: "CC BY-NC-SA",

15 modelType": "21.T11148/2d164bc217fced6a569",
16 hashccessRestrictions": false

7 .

18 “description’: "experiment collection”
19}

B

nav.xhtml

 Table of Contents

 		
 The KIT Data Manager Repository Platform Documentation

_images/overview.png

_static/ajax-loader.gif

_images/experimentCollectionRes.png
rost POST Collecton.

posT

o+ -

hitp/ocalhosts080/apiAn/colections/

Body Cookies Headers (11) TestResults

Prevew Viwlze | SON v (5

© 113-53-67er",
“capabilities: {

‘membershipIsHutable”: true,
“propertiesareHutable": true,
nut,

:26.0215642",

cc,

“CC BY-NC-SA",
'21.T11148/201e64bc217fce962569"

“hashccessRestrictions": false,

“nenber0t": (1,
fescriptiondntology”

+ "experinent collection”,

Status: 201 Creseed

_images/getExperimentCol.png
G - hopochostadanapIcolectons 134 5357 I

Body Cookles Headers (12) TestResults Stows: 2000 Time: 74ms Sae:

ey o e e | [E00S) B

B “properties’: {
W st 1,

15 “dateCreated": "2020-11-02715:10:26.0215642"
16 “ownership": "SCC",

i C BY-HC-SA",

1 "21.T11148/201e64bc217 fces6ases”
1 hashccessRestrictions": false,

20 “menberot”: [1,

2 “descriptionontology”: null

2

23
2
b
2%
27
%
2
3
3
2
3
34
3
36
37
38 "dateUpdated”: null
39 b

xperinent collection”

“http://localhost 8080/api/v1/collect lons /4311-135-tr76",
‘description®: null,

“21.T11148/6a3cacca25e61d0e3831"

null

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

